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Momentum and angular momentum in predictive relativistic 
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Departamento de Fisica Teorica, Universidad Autonoma de Madrid, 
Canto Blanco, Madrid, Spain 

Received 26 June 1974 

Abstract. The formulae for the total momentum and angular momentum of a system of two 
point-charges in Wheeler-Feynman electrodynamics are integrated using the approximate 
parametric equations of the trajectories in predictive relativistic mechanics. The zero- and 
first-order terms in the expansion in power series of g I e , e ,  are evaluated exactly, and the 
second-order term is calculated approximately for slow motion. 

1. Introduction 

There are well known formulae (Wheeler and Feynman 1949, Dettman and Schild 1954, 
Anderson 1967) for the determination of the momentum and angular momentum of a 
system of point-like charged particles in Wheeler-Feynman electrodynamics. However, 
these formulae involve integrations along the trajectories of the particles, and therefore 
they cannot be applied without prior knowledge of these trajectories. Since the basic 
assumption of predictive relativistic mechanics (PRM) is that the trajectories of the 
particles are completely determined by their initial positions and velocities, it is possible, 
in PRM, to give formulae for the momentum and angular momentum in terms of only 
these initial data. This is precisely the object of this paper, for the two-particle case, 
though it has been carried out only in an approximate way. 

First of all, we need the equations of the trajectories. Bel and Martin (1973a) have 
given a recurrent method to obtain these trajectories up to any order in some coupling 
constant g, provided the four-acceleration functions of the covariant formalism are 
known up to the same order (Bel et a1 1973), without having to integrate the second- 
order system of differential equations of motion. In § 2 we modify their method some- 
what, choosing a parameter more suited to our needs. 

In the following sections we give general expressions for the four-momentum and 
angular momentum, and we evaluate them up to order g exactly and the terms of order 
gz approximately (for slow motion). In the conclusion the results obtained are given 
more explicitly, for easier reference. 

Evidently, the method employed to perform integrations along the trajectories, 
using the parameter defined in 9 2, is also applicable to many other problems in PRM. 
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2. Parametric equations of the trajectories 

We consider a system of two point-like particles whose trajectories are given by the 
following system of eight second-order differential equations in the Minkowskian 
space-time M,? : 

= W!,ii;X (2.1) 

whose general solution is 

z:, = I&(x!, U;; T )  

$",x!, ui; ; 0)  = x: ,  

with 

I&x!, U:; 0) = U% a '  

If t is to be the proper time along each trajectory, the u:'s are the initial four-velocities 
and they are therefore subjected to the following restrictions : 

U: > 0, u:uap = - 1. 

Let us suppose: (i) that the two-particle system is isolated, which implies that system 
(2.1) is Poincare-invariant; and (ii) that system (2.1) is a predictive system (Bel er al 1973), 
that is, that the initial conditions x:, U{ yield the same trajectories as the initial conditions 
X: = t+b:(x!, U $ ;  T,), U: = &x!, U$; 5,) for any tl, t 2 .  The Poincare invariance is equiva- 
lent to 

(2.2) 5",[L$(z; - A"), qi;] = L",:(z!, ii;), 

and the predictivity condition is equivalent to 

and 

igap = 0. (2.4) 
The functions e that satisfy Poincare invariance are vectors that may be written in 

(2 .5 )  

the form (Arens 1972) 

5: = aa%b + baauz + babui  7 

where a, and b,, are functions of the four independent scalars 

k - ( u ~ u ~ ) ,  r b  E [ x i b  + ( x a b u , ) 2 ]  l i 2 ?  

sb ( x a b u a ) + ( u I u 2 ) ( x a b u b ) ;  Y b  (xabub).  (2.6) 

We shall suppose that these functions are known as expansions in power series of some 

t a, b, c, . , . = 1 ,2 ;  a and b will always be different, and there will never be summation over these indices, but 
c, d, . . . can take the same values as a or b, and they follow the summation convention. 

z, j, y ,  . . . = 0, 1,2 ,3;  i, j ,  k , .  . . = 1 ,2 ,3 .  We use the signature + 2  for M , ,  and unless otherwise stated, the 
units are chosen so that c = 1. 

8 and 2: are the positions and velocities along the trajectories, and x : ,  U$ are reserved for the initial positions 
and velocities. 

z:b z : - z ; ,  x:b = x: - x i .  
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coupling constant g (the first terms of these expansions have been computed for the 
electromagnetic interaction (Bel et al 1973, Salas and Sanchez Ron 1974) and for the 
short-range scalar interaction (Bel and Martin 1974), taking in both cases g = e l e 2 ;  
they have also been computed for the electromagnetic interaction taking g = mJm2 
(Bel and Martin 1973b), but this is not properly a coupling constant, since there is inter- 
action even when g = 0). 

What we are now interested in is to find the parametric equations of the trajectories 
without integrating system (2.1). Bel and Martin (1973a) have given a method to obtain 
these equations, but it is only locally valid because the parameter they use does not vary 
monotonically along the trajectory (however their final results are globally correct for 
non-positive values of their parameter C2 ; for C2 = 0 they have been successfully used 
by Salas and Sanchez Ron (1974)). In what follows we are going to apply their method, 
but choosing a parameter 8 for each trajectory which is a monotonically increasing 
function of the proper time. This parameter is defined by 

(2.7) 

Let us write 

where zl,, p b  and obc are functions of the initial conditions x!, U$ and the parameter O b .  It is 
clear that (d/dTb)Zl, = 0, and from this equation and the following expansions? : 

there follow (Bel and Martin 1973a) 

and 

! ( n  > 0 )  (2.10) 

(2.1 1) 

On the other hand, from (2.7) and (2.8), we have 

The equation (2.10) with left-hand term d o b b / d y b  is a consequence of the other two 
equations (2.10) and equation (2.11) and, therefore, it can be omitted. 

f = z,z= 0 g y .  
t f'"' will always denote the coefficient of g" in the expansion of the function f into power series of g, so that 
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For 56  = 0, we have z; = x;, and therefore 8, = S b +  ky,, and Pb = 0, o b c  = 0. Hence, 
integrating (2.10) with these initial conditions for yb = k- '(8,-sb), we finally obtain 

where the integrands must be expressed in terms of k, rb,  sb and yb, and the first three 
scalars remain constant during the integration, as well as the parameter 8,. 

For n = 0 it is immediately found 

p p  = 0, 0;:) = 0, 06:) = k-'(yU+Ob). (2.14) 

In the case of the electromagnetic interaction with g = e le2  (Lienard-Wiechert or 
b&) = -mi 1ru-3yb, b&) = 0, Wheeler-Feynman), remembering that U;" = mi 

(Bel et a1 1973, Salas and Sanchez Ron 1974) there result for n = 1 

py '  = mb- rb r, 3(kyb + sb- o b )  dyb 
k - ' ( O b  - S b )  

(2.15) 

with 

ro = [rbZ+SbZ+2kSbyb+(k2-l)ybZ]1'2. 

The parameter 0 that we have introduced would be adequate for the following 
calculations, but it is preferable to employ a new parameter which not only is a mono- 
tonically increasing function of the proper time, but also takes zero value when 7 = 0, 
that is, when z' = xz. To this end, we define 

2, E k- ' ( y o  + ob) ,  (2.16) 

and the new parameter 2 has the supplementary advantage of coinciding with the 
proper time to order zero. 

With the new parameter we have 

(2.17) 

(2.18) 

For the formulae corresponding to n = 1 for the electromagnetic interaction with 
g = e , e 2 ,  we first define 

J Y b  

and with this convention the formulae are 

(2.19) 
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3. Four-momentum and angular momentum in Wheeler-Feynman electrodynamics 

In Wheeler-Feynman electrodynamics, the four-momentum and the angular momentum 
about the origin of a system of two point charges are (Wheeler and Feynman 1949, 
Dettman and Schild 1954, Anderson 1967) 

where &(xi) is the half-retarded plus half-advanced Lienard-Wiechert potential 
produced by charge b at xi, given by 

, while i’ = d;”) . dz: 
di., a - d7, z;’ - (3.3) 

We may rewrite formulae (3.1)-(3.3) without using the 6 function and its derivative. 
For it, we define xfi(la) (c  = -, +) as follows: 

It is not difficult to see that (3.1H3.3) are equivalent to 

(3.6) 
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The four-momentum P” and the angular momentum Lpv can be written, similarly to 
(2.5), in the form 

P” = Dx’;, + E C ~ ~ + H ~ P ~ P Y ~ 1 2 z ~ l p ~ 2 y  (3.8) 

L” = - D ( x ’ ; x ~  - x ; x ~ ) + E ‘ ~ ( x ~ u ; - x , Y u ~ ) + F ( u ~ u ; - u U ; U ~ ) ,  (3.9) 

(H = 0 in PRM) 

with 

E1‘+E2‘ = E‘. (3.10) 

The relations between the coefficients of P” and some of the coefficients of LGV can 
be obtained for instance from the following relation (Schild 1963) 

L’V (?) - - L$) - V’PV + V”P”, 

where L$) and Lri, are the angular momenta about the origin and about the event V” 
respectively. 

4. First-order results 

Up to now the formulae are completely exact, and no use has been made of PRM. This 
section will be devoted to the calculation of Pw and Lpv to order g ele2. This approxi- 
mation corresponds to the substitution of the rectilinear tangent trajectories for the real 
ones, as may be easily seen. 

From (2.18), zio)” = x“,+buE, which substituted into (3.4) gives 

~ ~ o ) c ( A a )  = Ma - yb + tX,(E.,), (4.1) 

X,(E.,) [I.,” +2SbAa+(k2- 1)1,2]’”. (4.2) 

with 

The four-potentials are, to zero order, 

and a straightforward calculation using (3.5) and (3.6) yields the following results for 
the zero- and first-order coefficients : 

F‘O) = 0 (4.4) p O ) a b  = 0, 
ma D(O) = 0, E ( O ) a  = E ( 0 ) a a  = 

(4.5) 

(k2  - 1)ll2r2 +s, 
(k2-l)p2 +(k2-l)3i2 (k2-l)1i2r l+s1 In 

(1 )  - k(slrZ-~zrl) 1 F -  

where 

((k2 - l)-’/’p is the minimum interval between the tangents to the trajectories at x’; , x;). 
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5. Second-order results 

In order to obtain P p  and LO” up to order g 2 ,  it is first necessary to Compute &(La) up to 
order g. From (2 .8 )  and definition (3.4), a little calculation gives 

%6”‘(A,) = fx, l { [ ~ b ” + ~ ~ l ’ ( ~ ~ o ’ ‘ ) ] ( S b ~ a +  r i - E Y b X a )  

(5.1) +[ab;’- ( 1 )  70) ( 1 ) -  ( 1 )  ”(ON 
Ob. ( L b  ‘11 [ ( k 2  - l l A o  + sb+EkXal  + [Oab abb ( A b  )IExa)’ 

We have now all the basic elements needed to obtain PC2)” and L(*)j” from equations 
(3.5H3.7). However, the calculations are extremely involved, and we shall only compute 
the leading terms in the expansion in power series of the velocities. Time-reversal 
invariance indicates that the coefficients D and F are homogeneous functions of odd 
degree and the E’s are homogeneous functions of even degree of the velocities. Therefore, 
we are only concerned with the values of the E ’ s  when the velocities are zero (‘static 
case’), and with the terms of D linearly dependent on the velocities. Since F is the 
coefficient of u’;u; -u ;u ; ,  and it is consequently always multiplied by at least one 
velocity, we shall not compute it. 

In the rest of this section we assume that the events x’; and x; are simultaneous, that 
is, xy2 = 0. Then we have 

(5 .3)  

6. Conclusion 

For reference purposes we give here the complete results we have obtained, restoring 
the c’s in the formulae: 
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L'" = ml(x';u; 

with 

(electrostatic or Gaussian system) e1e2 g s -  
c2 

or 

g = e1e2 (electromagnetic system), 

1 1 1 
sb ~ ( x . b u . ) + ~ ( u l u 2 ) ( x . b u b ) ,  C Yb E c ( x a b u b ) ,  

p 2  (k2  - l)rf - s i ,  

(UZ) = (1 - -p2)- 'J (c ,  U), 
V 

c 
p z -. 

The coefficients of g2 have been calculated for xy2 = xy -x: = 0. 
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